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1 Introduction

One of the key challenges in artificial intelligence has been understanding and reasoning with texts. Earlier work in
natural language processing successfully applied graphical models and bayesian methods on various NLP tasks.

Lately, Neural Networks (NNs) resulted in a breakthrough in various fields of AI, including computer vision and
machine learning [5, 7]. However, various aspects of natural text make it difficult to apply standard neural networks
to NLP tasks. The difficulty arises from the need to represent text as numerical vectors, that can be used in neural
networks.

1.1 Representing words

Firstly, words need to be turned into numerical vectors. The usual representation in a Bayesian setting is a one-
out-of-k vector, in which each word is represented as a vector of the vocabulary length (k) which is zero everywhere
except at the word index. A disadvantage of this representation, is that it grows exponentially with vocabulary size.
Moreover, words may be more, or less similar compared to other words, but this is not reflected in the one-out-of-k
word vectors.

Distributional semantics have been used successfully to learn vector representation of words [9, 1]. These techniques
use the contexts in which a word occurs to compute a semantically meaningful vector (of any length). Various
approaches exist, including the well known word2vec [9].

1.2 Learning with sentences

Apart from finding a word representation, another problem is that of sentence length. Sentences may vary in length,
yet a neural network needs a fixed size vector for each datapoint. This problem was solved by the introduction of
recurrent neural networks [4].

The recurrent neural network consist of a single recurrent unit, that is repeated for each word in the sentence
(or more general, for each timestep of a sequence). At each timestep t, the unit takes the current word vector
(xt) as input, as well as a vector containing information about the previous timestep ht−1. The unit outputs this
’history’-vector ht at each timestep.

Depending on the task, the network may also need to make a prediction at every timestep. This output is called
yt. When predicting a sequence of words, the output at each timestep yt is often defined as a probability distribution
over the vocabulary.

1.3 Plain Recurrent Neural Networks (RNNs)

The most simple recurrent neural network consists of a single hidden layer, which is passed across time steps. Using
weight matrices W, U, a bias b and a nonlinearity f(•) a formal definition is:

ht = f(Wxt + Uht−1 + b) (1)

An output distribution is most easily defined by a softmax-distribution, based on the hidden state of the unit:

ŷt = σ(Vht + bs) (2)

Where the softmax function σ is defined by:

σ(z)i =
exp{zi}

σK
k=1 exp{zk}

(3)
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When a loss is defined over the output sequence (ŷ1, . . . , ŷN ), the network can be trained by back-propagating the
gradient over this loss trough all enrolled recurrent units.

1.4 Gated Recurrent Units (GRUs)

In a simple RNN, long-range time dependencies get propagated trough the hidden states, involving a multiplication
with U at every timestep. As the length of the dependency increases, this iterative multiplication has been found to
result in both exploding and vanishing gradient-values [10]. This problem poses a severe limitation on the power of
RNNs [8].

The problem of the exploding gradient can be solved by simply clipping the gradient at too high values, but the
vanishing gradient problem is more complicated. A solution was found by gating the feedback in each unit. Although
the idea of gating was initially proposed in the Long-Short-Term-Memory network (LSTM) [6], a simpler version of
this network known as the Gated Recurrent Unit (GRU) has become increasingly popular [3].

The GRU uses two gates to control the information flow. Both gates can be controlled by the data xt and the
previous state ht−1, based on trainable parameters. A sigmoid function (denoted σ̃) scales the values of the gates
between 0 and 1 representing a fully closed and a fully opened gate respectively.

The equations for the gates are similar to the update equations of a regular RNN:

zt = σ̃ (Wzxt + Uzht−1 + bz) (4)

rt = σ̃ (Wrxt + Urht−1 + br) (5)

where � denotes element wise multiplication
The GRU does not compute the hidden state ht directly, but uses an internal ’propal’ state h̃t. Again, the way

this proposal states is computed, is very similar to the computation of the hidden state in a regular RNN. However,
instead of using the complete previous state, the reset gate controls how much of the old information is discarded.

h̃t = f(Wxt + U (rt � ht−1)) (6)

Lastly the actual hidden state is computed. The true hidden state is simply a linear interpolation between the
proposal hidden state and the previous hidden state. The update gate controls the balance between these two vectors.

ht = (1− zt)ht−1 + ztwidetildeht (7)

Analogous to the simple RNN, the hidden state ht can be used to produce an output.

1.5 Encoder-Decoder

The RNN (and the abstraction to the GRU) define models which are able to turn a sequence into a vector, and
vice versa. However, many NLP taks require sequence to sequence mapping. An obvious example of this is machine
translation, where a sequence in a source language has to be converted to a sequence in a target language. Interestingly,
most problems of reasoning and question answering can also be defined in this framework, as they can essentially by
described as problems of mapping sentences to other sentences.

A framework which allows for sequence-to-sequence mapping is the encoder-decoder model. The encoder converts
an input into a fixed length vector, which we call the context vector c. This context vector is then passed to the
decoder to produce an output. When RNNs are used as encoder and the decoder, this model maps sequences to
sequences.

When using the RNN, the last hidden state serves well as a context vector [2, 12, 11]. At each timestep t, the
hidden state of a RNN contains information about all the previous states, and as a result the last hidden state can
represent the entire sequence.

The context vector can then be fed into the decoder RNN, either as the initial state h0, or as a separate input at
each timestep or both.

1.6 Our experiments

Taken altogether, the RNN Encoder-Decoder model is suited for the task of question answering, and may perform
well on this task. We will investigate this, by evaluating several recurrent encoder-decoder models on a question
answering task. We used the facebook bAbI dataset for question answering.
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First, we tested our models on a reversal task to investigate their handling of long term dependencies. Next, we
used our models for question answering.

We evaluated a simple RNN model, and a single layer GRU model to allow for longer time dependencies. We also
optimised a multi-layer GRU to achieve optimal results on this dataset.

2 Model

Though we tested various recurrent models, they all had the same basic structure. Each model consisted of an
encoder- and a decoder unit, that could be a single- or multi- layer recurrent neural networks (RNN or GRU).
Multilayer networks used the hidden state ht of the lower layer, to serve as input vector of the higher layer.

Encoder-units, were implemented as described in 1.3 (recurrent units), and 1.4 (GRU units). The context vector
c was passed to the decoder at each timestep and thus equations (1), (4), (5) and (6) were modified to include a term
Cc within each nonlinearity function (where C is a trainable parameter converting dimensions of the context vector
to the dimensions of that layer).

Furthermore, the context vector c was used to initialise the hidden state (for each of the possibly stacked layers)
of the decoder. A convertor consisting of linear layer and a nonlinearity was used to transform c into h0. For all
nonlinearities (except the gates in the GRU) a tanh function was used.

An embedder was used to convert words from a single index value, into a word embedding used as input for the
decoder or encoder. The embedder shared parameters for the encoding and decoding phase. We tried initialising the
embeddings using word2vec. But as this made no difference we did not report the results. All embeddings reported
were initialised randomly.

Input propagation trough the embedder, encoder and convertor did not differ during testing and training. The
use of the decoder varied for both phases.

2.1 Training

Figure 1 depicts the network during the training of a single datapoint (input and output sentence). The last token
of the input sequence was used as the first input x1 for the decoder. At each timestep, the decoder outputted a
distribution over te vocabulary using a softmax. This distribution was compared with the true distribution using a
categorical cross entropy loss. The true distribution was defined as a one-out-of k distribution for the correct word
(i.e. the probability of the true word was 1, the other probabilities were 0).

For the following timesteps, t ∈ 2, . . . , N , the true output word for the previous timestep (yt−1) was used as input
for the decoder (xt), correcting possible mistakes. As a result, the predicted sequence always had the same length as
the target sequence, regardless if the decoder did or did not produce the end-of-sequence token.

The model was trained using minibatches, and the loss was averaged over all words in all sentences equally. All
parameters were updated using back-propagation, and the gradient was clipped between -1, and 1 to prevent exploding
values.

2.2 Predicting

Figure 2 shows the network during prediction. The main difference with the network during training is that at each
timestep t > 1, the prediction of the previous time (ŷt−1) is used as input (xt). In order to predict a single word, based
on the distribution over the vocabulary, we used an argmax module, selecting the word with the highest probability.
The decoder kept predicting words untill the end-of-sentence token was generated, or until the sentence had reached
a maximum length.

3 Experiments

The model was used on two different tasks: question answering and sequence reversal. The facebook bAbI dataset
was used for both tasks.

3.1 Tasks

3.1.1 Learning to answer

The bAbI dataset is an artificial dataset containing short simple stories. Each story is built up by simple factual
statements, together forming the context in which the question has to be answered. Each story is intermingled with
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Figure 1: The network during training. During training, the target output words (yt) are put into the decoder at
each timestep t, correcting possible mistakes. <BOS> and <EOS> denote the beginning and end of sequence token
respectively. wi: denotes of the input sentence.

several questions. The answer to each question can be found in the preceding sentences.
The dataset has 20 different sub-tasks on which we performed our question-answering experiments. These range

from very simple ones (answering questions which need only one supporting fact to be answered) to very difficult
(inferring the motivation of the agents performing certain actions).

We preprocessed the data by merging the question with the story facts. The question was always prepended to
the story facts. We used all sentences preceding the question, resulting in datapoints of various lengths.

Even though the inputs consist of natural language sentences, we noted that the output always consisted of a
single word. As all sentences were assigned end- and beginning- of sentence tokens, each target sequences consisted
of 3 tokens. We therefore set the maximum sentence length during prediction to 5.

3.1.2 Learning to reverse

For sequence reversal we took the first five datasets and simply used the reversed sequences as the target output for
the decoder has to generate. This transformed the question answering task into a sequence reversal task. Otherwise,
the same setup was used for both the reversal task and the question-answering task. The maximum sentence length
during prediction was set to 50 tokens.

3.2 Model selection

Our models have many parameters that can be tuned for an optimal performance. We conducted experiments with
the most important parameters, listed below. When trying different values for one parameter, we kept the other
parameters fixed to a default value, marked by an asterisk. We tested all parameters on the first question answering
task.

• Units. We tested our model with standard recurrent units and with GRU* units.

• Number of layers. We tested our model with 1*, 2, and 4 layers (both the encoder and decoder).

• Word embedding size. We tested with values 10*, 20, 30 and 40.
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Figure 2: The network during prediction. The encoder and convertor units function identical as in the training
phase. An argmax module selects the most probable word ŷt. Each predicted word ŷt is used as input for the next
timestep t+ 1 untill an <EOS> (end of sequence) token is generated. For a complete legend see Figure 1.

• Hidden layer size. We tested with values 20, 40* and 80.

• Learning rate. We tested with three learning rate regimes: a linearly spaced range of values between 0.5 and
0.001*, a log-spaced range of values between 0.5 and 0.001, and a fixed value of 0.01.

• Momentum. We tested with three momentum regimes: a linearly spaced range of values between 0.5 and
0.9*, a log-spaced range of values between 0.5 and 0.9, and no momentum.

• Minibatch size. We tested with values 1, 10* and 20.

• Weight decay. We tested with values 0, 0.001*, 0.01 and 0.1.

• Epochs. This parameter is fixed to 50 for all experiments.

Using the optimal parameters fount in the above experiments, and some informal experimentation, we defined
an optimal model. We call this model Optimal, and evaluated its performance. With this model, we compared
the effect of trainable word embeddings to a fixed one-out-of-k vector representation (also know as a bag-of-words
approach, which we will call BoW). Furthermore, we tested the effect of feeding context vectors c at each timestep
to the decoder, versus only using the converter to input the context vector as the initial state h0. We evaluated
the Optimal model on both the sequence reversing and question answering tasks, and the BoW and NoContext
models on just the question answering task.

Optimal looks as follows:

• GRU units.

• 2 encoder and 2 decoder layers.

• Word embedding size of 40.

• Hidden layer size of 80.

• Learning rate is a linearly spaced range of values between 0.5 and 0.001.

• Momentum is a linearly spaced range of values between 0.5 and 0.9.
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Figure 3: Precision and recall

• Minibatch size of 10.

• Weight decay is 0.001.

3.2.1 Datasets

We ran the parameter selection experiments and the experiments with the BoW and NoContext models for the
question answering task on a single dataset: single-supporting-fact. We test our Optimal model on five datasets for
both tasks:

• single-supporting-fact (vocabulary size: 23): Only a single statement is needed to answer a particular question.

• two-supporting-facts (vocabulary size: 37): A combination of three statements is needed to answer the question.

• three-supporting-facts (vocabulary size: 38): A combination of three statements is needed to answer the question.

• two-arg-relations (vocabulary size: 19): These questions involve relations between objects with two arguments.

• three-arg-relations (vocabulary size: 43): These questions involve relations with three arguments.

3.3 Evaluation

Because of the nature of our prediction phase, the predicted sequences and the true target sequences could differ in
length. We defined two measures to compare the two sequences. Both measures count the number of exact matches.
In recall, the shape of the predicted sequence was adjusted to the shape of the target sequence and the proportion
correct was calculated.

For precision, we used the accuracy when adjusting the shape of the target sequence to the shape of the predicted
sequence.

Figure illustrates these measures. Note that the predicted sequence could be longer or shorter than the target
sequence. As a result, adjusting the size of the other sequence can mean extending or shortening of the sequence.
However, because each answer consisted of only one word. The true output usually was equal to, or shorter than the
true output, and we can interpret our measures as precision and recall.

Another remark is that our definition of precision and recall differs from the conventional definition used in
information retrieval. Our measures consider exact matches that are order sensitive. We will use the terms precision
and recall throughout this report, always referring to the described definition.

Note that when we mention precision and recall throughout this paper, we mean ordered precision and recall as
defined here.

4 Results

4.1 Model selection

See Table 1 for the results of our model selection experiments on the single-supporting-fact dataset. The rest of the
experiments were performed with the optimal parameters given by these results (i.e., our Optimal model uses these
parameters). The results show that 1) the GRU outperforms the standard recurrent unit, 2) having 2 hidden layers
is optimal, 3) larger word embeddings and larger hidden layer sizes are optimal, 4) linear or log spaced learning rate
and momentum regimes are optimal, 5) a minibatch size of 10 is optimal, and 6) a smaller weight decay is optimal.
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Parameter Value Precision (train) Recall (train) Precision (test) Recall (test)
Unit type GRU* 0.720 0.813 0.688 0.792
Unit type Recurrent 0.600 0.733 0.584 0.723
Hidden layers 1* 0.689 0.793 0.663 0.776
Hidden layers 2 0.736 0.824 0.692 0.795
Hidden layers 4 0.589 0.726 0.594 0.729
Word embedding size 10* 0.736 0.824 0.681 0.788
Word embedding size 20 0.728 0.818 0.680 0.787
Word embedding size 30 0.759 0.839 0.680 0.787
Word embedding size 40 0.749 0.832 0.686 0.791
Hidden layer size 20 0.679 0.786 0.654 0.770
Hidden layer size 40* 0.693 0.795 0.663 0.775
Hidden layer size 80 0.749 0.832 0.685 0.790
Learning rate 0.01 0.589 0.726 0.594 0.729
Learning rate linear* 0.692 0.794 0.662 0.775
Learning rate log 0.699 0.799 0.674 0.783
Momentum 0 0.717 0.811 0.680 0.787
Momentum linear* 0.740 0.827 0.684 0.790
Momentum log 0.739 0.826 0.678 0.785
Minibatch size 1 0.657 0.771 0.639 0.760
Minibatch size 10* 0.715 0.810 0.689 0.792
Minibatch size 20 0.714 0.809 0.678 0.785
Weight decay 0 0.829 0.886 0.681 0.787
Weight decay 0.001* 0.715 0.810 0.679 0.786
Weight decay 0.01 0.587 0.724 0.579 0.719
Weight decay 0.1 1.000 0.667 1.000 0.667

Table 1: Results for the model selection experiments performing the question answering task on the single-supporting-
fact dataset. *Default values for parameters: parameters were fixed to these values when testing the other parameters.
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(a) Categorical cross-entropy loss with L2.
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(b) Precision and recall evaluated on the test set.

Figure 4: Loss and performance of the Optimal model over 50 iterations on the single-supporting-fact dataset.

Dataset Precision (train) Recall (train) Precision (test) Recall (test)
single-supporting-fact 0.762 0.841 0.684 0.790
two-supporting-facts 0.608 0.738 0.592 0.728
three-supporting-facts 0.601 0.734 0.590 0.726
two-arg-relations 0.590 0.727 0.586 0.724
three-arg-relations 0.654 0.769 0.642 0.761

Table 2: Performance of the Optimal model on the question answering task on five different datasets.

4.2 Tasks

Figure ?? shows the loss and precision/recall of our Optimal model over 50 iterations on the single-supporting-fact
dataset. We see that although the loss continues to drop the entire time, the precision/recall maximize quite early.
Unfortunately, we do not have results that show the precision/recall over time for the sequence reversing task.

Table 2 shows the results of our Optimal model performing the question answering task on five different datasets.
We see that the model performs best on the single-supporting-fact dataset, and slightly worse on the other datasets.

Table 3 shows the results of our Optimal model performing the sequence reversing task averaged over five different
datasets.

4.3 Optimal vs. BoW vs. NoContext

Table 4 shows the effect of using a bag-of-words approach (instead of word embeddings) and dropping the context
vector in the decoder. We see that both the word embeddings and the context vectors are a crucial part of the model,
and dropping them leads to a significant performance drop.

5 Analysis

5.1 Sentence lengths

Figures 5 and 6 show the effect of input length on performance. For the question answering task, we see that input
length does not affect performance a lot, and it is still fine with longer input sequences. However, for the sequence
reversing task, we see that the model can deal with short sequences, but performance drops a lot when input sequences

Precision (train) Recall (train) Precision (test) Recall (test)
0.499 0.505 0.487 0.494

Table 3: Performance of the Optimal model on the sequence reversing task averaged over five different datasets.
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Model Precision (train) Recall (train) Precision (test) Recall (test)
Optimal 0.762 0.841 0.684 0.790
BoW 0.588 0.725 0.577 0.718
NoContext 0.589 0.726 0.594 0.729

Table 4: Results for experiments where components were dropped from the Optimal model. BoW uses no word
embeddings but a bag-of-words approach, and NoContext does not inject a context vector into the decoder.
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Figure 5: Precision and recall for two models on the question answering task.

get longer. It seems that the model lacks a long term memory for these kinds of tasks. Finally, for both tasks, we see
that the GRU performs better, as expected due to its more sophisticated memory.

5.2 Word embeddings

Figure 7 shows 2D visualization of the word embeddings found by the Optimal model on the single-supporting-
fact dataset. Although we do not observe perfect clusters, we can see that it has managed to find a meaningful
representation. For example, we see that locations, such as bedroom, bathroom, garden, hallway and office appear
relatively close to each other. Verbs such as is, went, moved, travelled appear to be clustered as well.

6 Conclusion

We can conclude that reversal definitely is the hardest task for this model, though this could also be due to the fact
that the generated sequences are much longer than the ones for question answering (where the answer were one word
long).

Performance was generally close to the state of the art, with similar performance on both training and test set,
suggesting a lack of overfitting.

Also, both the context and the embeddings help the model, since removing them hurts performance significantly.
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