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Abstract

In this report we propose a method for classifying the politeness of language. We
use annotated data gathered from Stack-Exchange and Wikipedia which was di-
vided into polite, neutral and impolite instances. Several approaches were investi-
gated: using Bag of Words with plain words, with words and Part Of Speech-tags,
Data Oriented Parsing based features and a combination of the three. Further-
more, we propose a method for reducing the dimensionality of the data based
on the information gain of individual features. The four feature-spaces perform
comparably well, with the combination of all features giving slightly higher re-
sults. The results of dimensionality reduction gives intuitive results which provide
a small insight into politeness in the English language.

1 Introduction

When writing an email to your supervisor, you might be wondering ‘Am I being sufficiently polite?’
or ‘How could I make make the email more polite?’. This report evaluates a system that was built in
order to be able to answer such questions. The goal is hence two-sided:

• Building a classifier for politeness.
• Finding out what it is about a sentence that makes it polite or impolite.

We compare two types of features for classification: words (with POS-tags) and DOP-features (Sec-
tion 2.4). We have used the Stanford Politeness Corpus [2] as data set, which contains sentences
from Stack-Exchange and Wikipedia with annotated politeness scores. The scores were obtained by
using a function of the politeness scores of the sentence as assigned by five different people. For
our purposes, we have converted the numerical scores to three classes. Using this dataset and our
features, we can then build a classifier that labels new sentences on their politeness. In order to
find out which features are important for politeness we look at their information gain (Section 2.6).
Furthermore, we look at two approaches for labeling individual words in a sentence. Firstly, using
politeness scores for entire sentences we compute a mean politeness scores for a word by taking the
mean score of all sentences that contain the word. Secondly, we made a topic model that has the
labels for the words as a latent variable which we assign using Gibbs sampling (Section 2.7). The
resulting application can be found on joostvandoorn.com/politeness/.

2 Method

2.1 Dataset

The dataset we use is the Stanford Politeness Corpus [2], which contains sentences with their po-
liteness score. As mentioned in the introduction we converted the scores into three different classes,
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Figure 1: Distribution of scores in the Stanford Politeness Corpus

which are impolite, neutral, and polite. The score is rather arbitrary as can be inferred by the large
disagreement between the annotators described in Section 3.1. Therefore there is also no direct
translation between the scores and a certain class label, consequently we decided to split the data in
equal portions. However due to the distribution of the scores, which can be seen in Figure 1, most
sentences are neutral. We split the data into 25% impolite, 50% neutral, and 25% polite sentences,
of which subsequently half of the neutral sentences were discarded to get an equal distribution of
the classes. This resulted in a split points of -0.39 and 0.45 for the politeness score in the Stanford
Politeness Corpus.

2.2 Basic model

Before creating our baseline we took a simple, intuitive, and naive approach. Based on the training
data, all words are given the mean score of all sentences containing the word as score. The score for
a test sentence is computed by summing the scores of all words that occur in the sentence, where
unseen words are ignored. Words with a mean score between -0.5 and 0.5 were ignored. The scores
were converted to -0.5 and 0.5 split, into impolite, neutral, and polite classes. This method achieved
an accuracy of 47% on the test set.

2.3 Bag of words

As baseline we have used a bag of words (BoW) model. The occurrences of each word in a sentence
are counted, and used as features for the model. The intuition of this model follows the fact that
certain words are mostly used in polite sentences, and others are more common in impolite sen-
tences. For example “Would” and “Could” are generally only used in polite sentences, and “Will”
and “Can” are generally considered less polite than the former. We extended the baseline model
with Part of Speech (POS) tags: instead of keeping counts for just the words, we kept counts for the
words with their POS tag. The use of POS tags can disambiguate different uses of a word. Due to
the fact that the BoW model does not take into account word order, most impolite sentences which
use polite words, irony or sarcasm are likely to be misclassified.

2.4 DOP features

A common recommendation by English style guides is using indirectness and specific use of tenses
for polite language. BoW with Words and POS-tags are inappropriate for representing such struc-
tural features, since except for specific words (for instance, would or could) no structural elements
are represented. For this reason, we have also tried a representation using Data Oriented Parsing-
features. Data Oriented Parsing (DOP) [4] is a probabilistic model that takes into account all the
subtrees of a sentence’s parse tree. We have used techniques designed for discontinuous DOP to
extract subtrees for each sentence in the data. The intuition is that these subtrees can better represent
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structural aspects of polite language, since one might expect the directness of a sentence to be more
easily identifiable by its parse tree than by its individual words. Accordingly, we have defined a
new feature space where each feature represents the number of times a subtree occurs in a comment.
However, since the number of subtrees in a datasets grows exponentially with its size, subtrees were
selected using double-DOP. This means all subtrees that occur twice or more in the dataset are con-
sidered, and all other trees are discarded in the feature-representation. The result is a dataset where
each comment is represented by a feature vector based on its subtrees which can then be used with
regular classification methods.

In order to find the appropriate parse-trees for each comment we used the BLLIP-parser [3]. For each
sentence the parse-tree was generated from which subtrees were extracted using an online available
implementation by Andreas van Cranenburgh1. The average number of sentences per comment was
approximately 2.13. The feature space was based on the training set, such that any subtree that
appears in the test set but not in the training set is discarded. The resulting feature space consists of
261395 subtrees. Section 2.6 explains how we dealt with this large amount of features.

2.5 Classifiers

Initial experiments with numerous well known classifiers were performed to profile which classifiers
appeared the most promising. This resulted in the expectation that the Support Vector Machine
(SVM), Multilayer Perceptron (MLP), Naive Bayes and Linear Regression are best suited for our
problem. For this study the implementation of these classifiers from scikit-learn2 was used. In order
to maintain a balance within the data, the classes were either weighted or instances were discarded.
This prevents the classifiers from being biased in favor of the most represented class. In our case, a
classifier could always classify an instance as neutral and achieve an accuracy around 50%, but by
balancing the data such a strategy would only result in an accuracy of 33%.

2.6 Information gain as importance measure

When using words and parts of parsing trees as features for classification, the number of features is
going to be significantly larger than the number of training sentences. For comparison, our training
set consists of less than 9000 examples, whereas over 260.000 features are extracted from these
using DOP.

In order to improve classification results and in order to better understand how politeness is caused,
we ordered the features based on their information gain. The information gain is obtained by taking
the difference in entropy of the data set before and after splitting based on whether a training example
contains the feature. Entropy measures the randomness in a system, in such a way that an increase in
entropy should correlate with a discriminative feature for politeness. An extreme example would be
a feature that only occurs in polite sentences, such a feature would be very useful for classification
and would also be interesting for understanding politeness better. The formula for entropy is

H({xi}ni=1) = −
n∑
i=1

p(xi) log(p(xi)),

which would be maximal when all probability is assigned to a single state xi (for example, when all
sentences with our special feature are polite). Information gain is then defined by

IG(feature) = H(feature)p(feature) +H(¬feature)(1− p(feature))−H(original),

the difference in entropy before and after splitting on the feature, where the entropy of the partitioned
sets are weighted using the size of the sets. A feature that almost never appears hence gains a lower
information gain, which is desirable for implementation purposes.

2.7 Topic model and Gibbs sampling

Let N sentences be given containing words wn1, . . . , wnMn for n = 1, . . . , N . Each word wnm
is generated from a distribution of words φz , with the possibilities background (neutral), polite

1https://github.com/andreasvc/disco-dop
2scikit-learn.org
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Figure 2: Graphical model for our topic model.

or impolite. These φz are Dirichlet distributions with hyperparameter β. In order to see which
distribution a word is generated from, we attach a (latent) variable znm to each word. Furthermore,
a sentence as a whole can be either polite or impolite, which we store in the (observed) variable yn.

We make the assumption that polite sentences only contain words that were generated from the
polite distribution or the background distribution, where the distribution over both distributions is
specified by µ. Similarly, µ is used for impolite sentences to give the distribution over impolite words
and backgrounds words. The distribution given by µ is a Beta distributions with hyperparameter
α = (α1, α2). The generation of a topic znm for word wnm is hence sampled from µ, where yn
picks either the polite or the impolite distribution.

In order to visualize which words are polite, which are impolite and which are background, we want
to sample the topics zi for the words wi of a new sentence. For this purpose, the sentence first needs
to be classified as either polite or impolite (which gives the value for y) and then we need to sample
from p(zi|W, y,Φ, z−i, µ), where W consists of all words in the sentence, z−i are the other topics
and Φ = φ1, φ2, φ3 = φbackground, φpolite, φimpolite.

The derivation of the form of the distribution is given in the appendix, with the result

p(znm = i|Z−nm,W−nm,Φ, µ) ∝ αδ + C(δ)− 1

α1 + α2 + C(0) + C(1)− 1
× β + Ci(wnm)− 1

−1 + Viβ +
∑Vi

w=1 Ci(w)

for δ = δi,(im)polite, Vi the number of words in the vocubulary of φi, C(0), C(1) the number of
background respectively (im)polite words and Ci(w) = #{(a, b) : wab = w and zab = i}. Gibbs
sampling [1] is applied to generate topics for the words, where the topics (znm) corresponding to
words in the dataset are initialized using the mean politeness score of the words. We ran Gibbs
sampling for many iterations on the training set and save the corresponding counts. For a new
sentence, we classify the sentence as polite or impolite and pick the most probable label for the
words according to the model. Such a MAP estimate will be approximately correct now, since the
choice of label for the individual words in the sentence will affect each other only due to change in
distribution of the counts. If the counts are already high, adding one to one of the counts will make
hardly any difference, such that the choice of labels for a new sentence is almost independent.

If the priors α, β are chosen high, the result will be a flat distribution. This can also be seen from the
formula above: if α, β are chosen higher, the counts will be less important and the distribution will
be rather flat. By varying the ratio between α1, α2, we can put our prior knowledge about the ratio
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background-(im)polite into the system. It may be best to pick β rather small, since we may expect
that words have a preference for being generated from the background, the polite or the impolite
distribution. We use the parameters α = (5, 2) and β = 0.5 in our final implementation of the topic
model.

3 Results

3.1 Data evaluation

The sentences in the data are annotated by five different people on their politeness. Politeness itself
is not an easy concept to capture in words and it can be expected that a politeness score is highly
subjective. Furthermore, people paid for the number of sentences they annotate may also be less
diligent with providing trustworthy annotations. For these reasons, the data can be expected to be
noisy such that we cannot expect to reach performance above a certain threshold.

The annotators have ranked the sentence on its politeness by giving a score between 1 and 25. We
have tested each individual annotator on our classification problem (with 25-50-25 data split) to see
how well they would have performed. For this purpose, we have varied the possible split points
(R,L) where x < R is impolite, x > L is polite and in between is neutral. Using the individual
annotator scores, we classified the sentences and compared this to the label that was given to the
sentence. We picked the split points that gave the best result for the average classification rate. Note
that the score given by an annotator also influences the label given to the sentence, such that in this
set-up, the human annotator has a huge advantage over our implementations. Still, the annotators
only classified 57% correctly on average (using split points (12,16)) and classified the same label
only 11% of the time (with split points split points (12,16) again).

Furthermore, the performance gets worse if you average over the labels. We counted the number
of polite, neutral and impolite examples and the mean number of times the derived annotator labels
differed for an example with a certain label. Computing the mean accuracy per label and taking the
average over these, the best split was still (12,16) but the percentage decreased to 48%.

For our purposes, it would have been better if more sentences would have been annotated. The types
of data annotated are also rather limited, since only Stack-Exchange and Wikipedia comments are
commented, which are a very specific type of sentences. In particular, the model will probably not
learn what swearing is and a large part of the data will be neutral (technical) language. Furthermore,
the data seems to be very noise, based on the performance of human annotators. This problem may
be too ill-defined for classification into 25 classes (as was asked of the annotators) and the data might
have been better if they were only asked to classify in three or five categories. In order to improve
classification results etcetera, improving the data could make the most drastic change in our opinion.
Finally, the question ”how polite is this sentence” may be too ill-defined for humans, as can be seen
from the small number of times five human annotators agree on a label.

3.2 Words with the highest information gain

As explained in Section 2.6 we have ranked the features based on their information gain. In Table 1
the results for the word features can be found.

Words like “Could”, “Can”, “Would” are usually indicative of polite question whereas a sentence
starting with “Why” is usually not going to be very polite. This can be seen in the table, since all four
words have a high information gain and the first three have a positive mean score whether the “Why”
has a negative score. Other intuitive results are that “please”, “thank” and “Good” are seen as polite
by our measure and that “yourself” and “homework” are indicators for impolite sentences. The
latter is rather domain-specific: people on stack-exchange do not want to be doing your homework
for you. Furthermore, most of the words that are seen as least indicative for politeness are also
very intuitive: “formats”, “locally”, “downloaded” are some examples of word features that would
probably not be indicative for politeness.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Word Mean score Information gain Word Mean score Information gain
Why -0.5993 6.321E-04 My 1.199E-02 2.954E-08

Thanks 0.8064 4.810E-04 curious 3.596E-02 2.954E-08
why -0.3158 2.093E-04 answered 4.354E-02 4.094E-08
Hi 0.476 1.828E-04 assume 4.552E-02 4.466E-08

help 0.3603 1.716E-04 most 1.259E-02 4.718E-08
thanks 0.9506 1.676E-04 suggesting -0.1112 4.866E-08

not -0.172 1.658E-04 downloaded 6.108E-02 4.866E-08
! 0.1226 1.456E-04 developer 9.596E-02 4.866E-08

Would 0.4526 1.446E-04 ignorance 0.1725 4.866E-08
Thank 0.982 1.441E-04 drive -6.205E-02 4.866E-08

? -4.073E-02 1.431E-04 insert -4.491E-02 4.866E-08
for 0.1537 1.352E-04 Anything 8.783E-02 4.866E-08
Can 0.2124 1.281E-04 cross -9.572E-02 4.866E-08

homework -0.6805 1.069E-04 past 0.192 5.574E-08
I 9.294E-02 9.161E-05 likely -2.389E-02 5.806E-08

You -0.2605 9.153E-05 formats -1.997E-02 6.967E-08
Could 0.236 9.123E-05 divide 0.3744 6.967E-08
could 0.237 8.397E-05 dynamically 8.206E-04 6.967E-08
good 0.2565 8.212E-05 ideal -0.1281 6.967E-08
Good 0.7076 8.162E-05 developers 0.3626 6.967E-08
please 0.2027 7.797E-05 newbie -0.1208 6.967E-08
really -0.2473 7.524E-05 vertical -1.444E-02 6.967E-08

yourself -0.5114 6.922E-05 locally -1.612E-02 6.967E-08
mind 0.4262 6.691E-05 invalid -0.1295 6.967E-08
did -0.1736 6.678E-05 tube -0.2659 6.967E-08

Table 1: The twenty-five most (left) and least (right) informative words in the training set according
the information gain.

3.3 DOP features with the highest information gain

Similar to the ranking of words the DOP-features in our feature space were ranked based on their
information gain. The resulting ranking showed that the top 25 most discriminative features are all
variations on the three subtrees displayed in Table 2. The first feature represents a “Why” question
which is usually labeled impolite, the second feature shows the usage of “Thanks” which is generally
considered polite. Both these features correspond with the ranking of words, however the last feature
can not be represented by BoW based on words and POS-tags. The third feature represents sentences
starting with a modal verb, for instance Would you like ... or Could it be that .... Sentences with
this subtree are generally neutral or polite which is in agreement with the idea that indirectness
contributes to the politeness of a sentence.

3.4 Classfication using word or DOP features

The performance of the politeness classifiers based on word counts versus classifiers based on DOP
features is shown in Figure 3. For both word and DOP features, the linear SVM was the best
classifier. As expected, in both cases the accuracy increased with the number of features. The
optimal performance did not differ significantly between both types of features (Table 3) and occured
at a similar number of features. However, classifiers based on word features only have a better
accuracy when using less features. Moreover, classifiers based on DOP features have a significant
drop in performance when more features are added.

3.5 Classification using both word and DOP features

The results in the previous section suggested that a linear SVM was the best classifier for this exper-
iment. This was also suggested by pilots with different classifiers. A linear SVM was also trained
with different combinations of word and DOP features, of which the results are shown in Figure 4.
It can be seen that at least a hundred features are required for an accuracy of around 50%, however
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Average Score:
Polite:

Impolite:
Neutral:

-0.59
5%

54%
41%

0.80
75%
5%

20%

0.26
36%
10%
54%

Table 2: The three most discriminative DOP-features in the training set according the information
gain with their average score and distribution over the politeness labels. The twenty five most
discriminative DOP-features are all variations on these three features.

Figure 3: Performance of classifiers using either word or DOP features.

it seems words and DOP features hardly complement each other as there is no significant increase
when combining them. Thus, while the highest accuracy achieved was using a combination of words
and DOP features, the difference is insignificant compared to using only words or DOP features. The
results of the best classifiers are repeated in Table 3.

Features used # word #DOP Accuracy on Accuracy on
features features training data test data

Only word features 1779 0 0.7392 0.5263
Only DOP features 0 1779 0.6746 0.5136
Both DOP and word features 149 1779 0.8950 0.5308

Table 3: The accuracy of linear SVM using a combination of word and DOP features.

3.6 Topic model distributions

In Table 4 the results for the topic model can be found. We have given the top 10 words for each
distribution, where only words that occur at least N times are considered and were the words are

7
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Figure 4: Accuracy on the test set of linear SVM using both word and DOP features.

scored based on the proportion of counts that lie within a certain distribution (i.e. their normalized
counts over the distributions). We have considered two initializations, a random initialization and
one that uses the mean score of words. In the latter case, we initialized the topic model using the the
mean score of the words and the label of the sentence in the data: words with a score above 0.2 in
polite sentences get a polite label, words scoring between 0.1 and 0.2 get a polite or background label
assigned randomly and the remainder gets a background label. The labels for impolite sentences are
assigned similarly. The top 10 before and after Gibbs sampling for ten million iterations (where one
iterations is a single, random update) are given.

Only looking at words that occur often (N = 100, 300), the results are rather intuitive. Simi-
larly to what was found using entropy, words like thanks, could, why and not are found on top of
the (im)polite distributions. Also note the domain specific results that are occuring again, such as
wikipedia in the impolite distribution and code in the polite distribution. Their does not seem to be
much difference between initializing the words randomly or based on their mean scores, which is
probably due to the fact that words are only allowed to get a background label or the label of the
sentence, such that words with a high mean score will also have a higher expected proportion of
polite distribution.

The other setting do not give these nice intuitive results, nor does Gibbs sampling (actually applying
the topic model) seem to improve the results. Several flaws of our topic model may be the cause
of this result. First of all, sentences are not “polite” or “impolite”, but can be in an entire spectrum
around those two, whereas our model enforces the sentences to be labeled in two categories. Fur-
thermore, the assumption that a sentence may only contain polite or background words may be too
restrictive. Finally, the politeness of a word can depend heavily on its context, which is not modelled
in our topic model. The first two problems could easily be resolved (by adding more categories or
distributions), whereas the last may be an indicator may be an indicator that a topic model as tool
does not fit as a model for politeness.

8
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Random initialization
N Gibbs Impolite Polite Background
10 before grammar, banned, realize,

faith, street, excuse, ex-
plained, hows, perfectly,
claiming

manage, peer, affect, indi-
vidual, construct, edge, in-
cludes, overlapping, refer-
enced, menu

displayed, citations, night,
insert, speak, requirement,
prompt, respect, developer,
stick

10 after claiming, followed, banned,
sorting, media, accurate,
sock, attached, img, pov

subpage, displayed, session,
affect, cycles, locations,
sides, attribute, fa, recom-
mend

purposes, types, methods,
heard, blue, putting, re-
leased, u, enabled, column

100 before homework, why, wikipedia,
come, really, anyone, again,
questions, person, exactly

thanks, id, hi, server, x,
correct, each, system, add,
check

given, long, their, though,
help, tell, perhaps, while,
cant, may

100 after homework, seem, clear,
why, understand, who,
going, anyone, really,
enough

thanks, start, 0, hi, created,
seem, clear, back, mind,
clarify

many, tag, number, source,
second, non, another, post,
added, provide

300 before why, really, dont, not, youre,
now, mean, no, did, answer

thanks, code, out, can,
could, some, please, would,
for, if

should, am, here, could, 2,
thanks, im, also, see, think

300 after why, really, than, not, mean,
dont, something, no, this,
where

thanks, could, 1, than, up,
code, page, using, please, im

2, way, need, does, they,
here, will, my, its, also

Initialization using mean scores
N Gibbs Impolite Polite Background
10 before claiming, banned, 3rr, pov,

config, followed, hell, https,
excuse, virtual

subpage, displayed, cycles,
session, assembly, attribute,
sides, locations, loaded, to-
morrow

there, de, interface, gmail,
managed, played, private,
term, auto, suppose

10 after 3rr, followed, https, virtual,
sorting, accurate, claiming,
hell, attached, attack

subpage, cycles, displayed,
affect, sides, attribute, fa,
recommend, vertices, intro

among, citations, disam-
biguation, dyk, nominated,
commons, rfa, objection, ed-
its, replied

100 before homework, why, wikipedia,
people, really, who, anyone,
exactly, wrong, saying

thanks, hi, help, check,
mind, may, look, could,
though, good

there, back, url, articles, ti-
tle, given, own, n, part, was

100 after homework, why, seem,
function, people, person,
wrong, instead, he, who

thanks, mind, hi, able, may,
help, running, x, id, start

edits, file, title, part, own,
questions, already, provide,
most, name

300 before why, really, did, not, youre,
no, dont, article, thanks,
now

thanks, could, work, way,
please, would, can, more,
should, any

there, url, was, see, than,
other, has, they, will, 2

300 after why, really, now, dont, did,
no, mean, youre, way, just

thanks, could, can, code,
would, some, for, all, work,
they

sure, its, from, is, you, that,
as, an, in, if

Table 4: Top 10 words for the distributions of the topic model with various settings, which are
explained in Section 3.6.
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4 Conclusion

The results from this study show that classifying politeness is a difficult problem, as even human
annotators find it hard to agree on what should be considered polite. However, we have reached
accuracies of over 50% where random classification would reach 33%, therefore to some extent
politeness is classifiable. Still, our results show that classifications are not very reliable.

The different feature spaces that have been investigated all score similarly well. The difference
between using words, DOP features or a combination is insignificant. Thus, there seems to be no
preference in what feature space to use when only considering accuracy. However, it should be noted
that extracting DOP features takes a considerable amount of time compared to extracting word-based
features, which could be an incentive to prefer word-based features over DOP features.

However the feature reduction based on information gain did show an advantage from using DOP
over word based features. While both feature spaces gave intuitive results when looking at the most
discriminative words, DOP features are able to express structural elements which the word based
features can not. For instance feature reduction on DOP features shows that sentences starting with
models are likely to be polite, something word based features are unable to do directly (instead the
most used modals could be seen as polite). Furthermore, feature reduction is able to give an insight
into polite language as its results are comprehensive for both feature spaces.

We also investigated the use of a topic model for assigning politeness labels to individual words.
We assumed sentences were labeled as polite or impolite and that words in such a sentence could be
either generated from the (im)polite distribution (based on the sentence label) or the background dis-
tribution. Random initialization or initialization on mean score did not give significant differences,
nor did applying Gibbs sampling (using the topic model) improve the results. Only when looking at
frequent words were we able to arrive intuitive results.
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Appendix: derivation of the topic model

This appendix derives the form of the conditional distributions needed for the topic model described
in this report (Section 2.7). The joint is given by

p(Z,W, Y, µ,Φ|α, β) = p(µ|α)

3∏
i=1

p(φi|β)

N∏
n=1

M∏
m=1

p(wnm|φznm
)p(znm|µ, yn),

hence

p(Z,W |α, β) =

∫
p(Z,W, Y, µ,Φ|α, β)dΦdµ =(∫

p(µ|α)

N∏
n=1

M∏
m=1

p(znm|µ, yn)dµ

)(∫ 3∏
i=1

p(φi|β)

N∏
n=1

M∏
m=1

p(wnm|φznm)dΦ

)
.
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Both parts will be worked out separately.∫
p(µ|α)

N∏
n=1

M∏
m=1

p(znm|µ, yn)dµ =

∫
Γ(α1 + α2)

Γ(α1)Γ(α2)
µα1−1(1− µ)α2−1

2∏
i=1

∏
{n:yn=i}

Mn∏
m=1

p(znm|µ, yn)dµ =

Γ(α1 + α2)

Γ(α1)Γ(α2)

∫
µα1−1(1− µ)α2−1

2∏
i=1

∏
{n:yn=i}

µC(0,n)(1− µ)C(1,n)dµ

whereC(0, n), C(1, n) denotes the number of background or (im)polite words in sentence n respec-
tively. This expression can be rewritten as follows:

Γ(α1 + α2)

Γ(α1)Γ(α2)

∫
µα1−1(1− µ)α2−1µ

∑2
i=1

∑
{n:yn=i} C(0,n)(1− µ)

∑2
i=1

∑
{n:yn=i} C(1,n)dµ =

Γ(α1 + α2)

Γ(α1)Γ(α2)

∫
µα1−1+C(0)(1− µ)α2−1+C(1))dµ =

Γ(α1 + α2)

Γ(α1)Γ(α2)

Γ(α1 + C(0))Γ(α2 + C(1))

Γ(α1 + α2 + C(0) + C(1))
∝ Γ(α1 + C(0))Γ(α2 + C(1))

Γ(α1 + α2 + C(0) + C(1))

for C(0) the total number of background tags, and C(1) the total number of (im)polite tags. Before
rewriting the second integral, note that we assume a fixed vocabulary of some size Vi of possible
words that the φi can generate.∫ 3∏

i=1

p(φi|β)

N∏
n=1

M∏
m=1

p(wnm|φznm
)dΦ ∝

∫ 3∏
i=1

Vi∏
w=1

φi(w)β−1
3∏
i=1

V∏
w=1

φi(w)Ci(w)dΦ =

3∏
i=1

∫ Vi∏
w=1

φi(w)β−1+Ci(w)dφi =

3∏
i=1

∏Vi

w=1 Γ(β + Ci(w))

Γ(
∑Vi

w=1 β + Ci(w))

for Ci(w) the number of (n,m) such that wnm = w and znm = i.

Combining the equations above gives

p(Z,W, Y, µ,Φ|α, β) =

3∏
i=1

∏Vi

w=1 Γ(β + Ci(w))

Γ(
∑Vi

w=1 β + Ci(w))
× Γ(α1 + C(0))Γ(α2 + C(1))

Γ(α1 + α2 + C(0) + C(1))

such that

p(znm = i|Z−nm,W−nm,Φ, µ) =
p(znm = i, Z−nm,W, Y, µ,Φ|α, β)

p(Z−nm,W−nm, Y, µ,Φ|α, β)
∝

Γ(α1 + C(0))Γ(α2 + C(1))Γ(α1 + α2 + C(0) + C(1)− 1)

Γ(α1 + α2 + C(0) + C(1))Γ(α1 + C(0)− δi,back)Γ(α2 + C(1)− δi,(im)polite)
×

Γ(β + Ci(wnm))][Γ(
∑Vi

w=1 β + Ci(w)− δw,wnm
]

[Γ(
∑Vi

w=1 β + Ci(w))][Γ(β + Ci(wnm)− 1]
.

The equality x− 1 = Γ(x)
Γ(x−1) and some simplifications give

αδ + C(δ)− 1

α1 + α2 + C(0) + C(1)− 1
× β + Ci(wnm)− 1

−1 + Viβ +
∑Vi

w=1 Ci(w)

for δ = δi,(im)polite, Vi the number of words in the vocubulary of φi, C(0), C(1) the number of
background respectively (im)polite words and Ci(w) = #{(a, b) : wab = w and zab = i}.
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Carla: Worked on POS tagger (unfinished) and examined data and started on baseline first few
weeks with Joost. Wrote code for computing entropy and applied this at word level and to the DOP
features. Worked out the topic model and implemented the Gibbs sampling algorithm (including
conditional distribution and some adjustments to the word count code that Harrie wrote for the topic
model implementation). Evaluated the data (tested the annotators on the data) and wrote about
information gain on word-level.

Harrie: Worked on DOP-features, got BLLIP and Disco-dop working on MAC os-x and wrote the
code to create the feature-space and convert data to DOP-features. This was considerably more
difficult than anticipated due to a bug in the disco-dop implementation of Andreas, however it has
now been resolved in the package. Furthermore, worked out how to convert test-data to the feature
space of the training-data and how to perform this task efficiently enough for the live demo. Helped
Carla with the implementation of the topic model and set up the first classifier experiments on which
Ties and Joost could continue.

Ties: Worked on DOP-features with Harrie. Wrote the sentence tokenizer as well as a script to
run BLLIP on all data (after getting everything working). Wrote scripts to batch test classifiers for
DOP-features and a general plot script to display all the statistics for DOP- and word- classifiers.
Did a lot of piloting together with Joost (word features) to come up with good classifiers. During
piloting, we discoverd a couple of flaws which I fixed like the splitting of our data and comparing
word- and DOP- entropy. Also visualized classifier results.

Joost: Worked on POS tagger. Wrote code for the decision stumps. Implemented the baseline, tested
different classifiers. Created the demo application, including the visualization, and setup the online
demo. Helped debug/figure out problems with the classifiers for both the baseline and the DOP
classifiers. Made small implementation improvements such as figuring out why Gibbs sampling
was slow, and improved it.

12


	Introduction
	Method
	Dataset
	Basic model
	Bag of words
	DOP features
	Classifiers
	Information gain as importance measure
	Topic model and Gibbs sampling

	Results
	Data evaluation
	Words with the highest information gain
	DOP features with the highest information gain
	Classfication using word or DOP features
	Classification using both word and DOP features
	Topic model distributions

	Conclusion

